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Abstract
We report and analyze reversible magnetization measurements on a high quality MgB2 single
crystal in the vicinity of the zero-field transition temperature, Tc � 38.83 K, at several magnetic
fields up to 300 Oe, applied along the c-axis. Although MgB2 is a two-gap superconductor our
scaling analysis uncovers remarkable consistency with 3D-xy critical behavior, revealing that
close to criticality the order parameter is a single complex scalar as in 4He. This opens up the
window onto the exploration of the magnetic field induced finite size effect, whereupon the
correlation length transverse to the applied magnetic field Hi applied along the i -axis cannot
grow beyond the limiting magnetic length L Hi = (�0/(a Hi))

1/2 with a � 3.12, related to the
average distance between vortex lines. We find unambiguous evidence for this finite size effect.
It implies that in type II superconductors, such as MgB2, there is a 3D–1D crossover line
Hpi(T ) = (�0/(aξ−

j0ξ
−
k0))(1 − T/Tc)

4/3 with i �= j �= k and ξ±
i0, j0,k0 denotes the critical

amplitudes of the correlation lengths above (+) and below (−) Tc along the respective axis.
Consequently, above Hpi(T ) and T < Tc superconductivity is confined to cylinders with
diameter L Hi (1D). In contrast, above Tc and Hpi(T ) = (�0/(aξ+

j0ξ
+
k0))(T/Tc − 1)4/3 the

uncondensed pairs are confined to cylinders. Accordingly, there is no continuous phase
transition in the (H, T )-plane along the Hc2-lines as predicted by the mean-field treatment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of superconductivity in MgB2 [1] many
important properties have already been measured, particularly
outside the regime where thermal fluctuations dominate. The
observation of thermal fluctuation effects have been limited
in conventional low-Tc superconductors because the large
correlation volume makes these effects very small compared
to the mean-field behavior. By contrast, the high transition
temperature Tc and small correlation volume in a variety
of cuprate superconductors lead to significant fluctuation
effects [2, 3]. In MgB2 the correlation volume and Tc lie
between these extremes, suggesting that fluctuation effects
will be observable. Indeed, excess magnetoconductance [4],

fluctuation effects in the specific heat [5], and fluctuating
diamagnetic magnetization [6] were observed recently in
powder samples. Here we report and analyze reversible
magnetization data of a high quality MgB2 single crystal in
the vicinity of the zero-field transition temperature, Tc �
38.83 K, at several magnetic fields up to 300 Oe, applied
along the c-axis. Though MgB2 is a two-gap superconductor
our scaling analysis uncovers below Tc remarkable consistency
with 3D-xy critical behavior, revealing that the order parameter
is a single complex scalar as in 4He. The high quality
of the single crystal made it possible to enter this regime.
For this reason the magnetic field induced finite size effect,
whereupon the correlation length transverse to the applied
magnetic field cannot grow beyond the limiting magnetic
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length L Hi = (�0/(a Hi))
1/2, with the magnetic field Hi

applied along the i -axis and a � 3.12, could be verified
and studied in detail. L Hi is related to the average distance
between vortex lines. Indeed, as the magnetic field increases,
the density of vortex lines becomes greater, but this cannot
continue indefinitely; the limit is roughly set on the proximity
of vortex lines by the overlapping of their cores. This finite size
effect implies that in type II superconductors superconductivity
in a magnetic field is confined to cylinders with diameter
L Hi . Accordingly, there is below Tc a 3D–1D crossover line
Hpi(T ) = (�0/(aξ−

j0ξ
−
k0))(1 − T/Tc)

4/3 with i �= j �=
k. ξ±

i0, j0,k0 denotes the critical amplitudes of the correlation
lengths above (+) and below (−) Tc along the respective
axis. It circumvents the occurrence of the continuous phase
transition in the (H, T )-plane along the Hc2-lines predicted
by the mean-field treatment. Furthermore, our analysis of the
magnetization data of Lascialfari et al [6] taken on a MgB2

powder sample also confirms that there is a magnetic field
induced finite size effect above Tc as well. It leads to the line
Hpi(T ) = (�0/(aξ+

j0ξ
+
k0))(T/Tc − 1)4/3, where the 3D–1D

crossover occurs and the uncondensed pairs are forced to be
confined in cylinders.

The paper is organized as follows: next we sketch the
scaling theory appropriate for a neutral type II superconductor
with a single complex scalar order parameter falling in the
absence of a magnetic field into the 3D-xy universality class.
The following section is devoted to experimental details, the
presentation of our magnetization data for T � Tc, their
analysis by means of the scaling theory and the analysis of the
magnetization data of Lascialfari et al [6] taken on a MgB2

powder sample for T � Tc.
Though MgB2 is a two-gap superconductor, an effective

one-gap description appears to apply sufficiently close to
Tc [7]. As we concentrate on the effects of thermal fluctuations
in the presence of comparatively low magnetic fields we adopt
this effective one-gap description. Accordingly, the order
parameter is assumed to be a single complex scalar. To
derive the scaling form of the magnetization in the fluctuation
dominated regime we note that the scaling of the magnetic field
is in terms of the number of flux quanta per correlation area.
Thus, when the thermal fluctuations of the order parameter
dominate, the singular part of the free energy per unit volume
of a homogeneous system scales as [2, 3, 8–13]

fs = Q±kBT

ξ 2
abξc

G± (z) = Q±kBT γ

ξ 3
ab

G± (z) , z = Hcξ
2
ab

�0
.

(1)
Q± is a universal constant and G±(z) a universal scaling
function of its argument, with G±(z = 0) = 1. γ = ξab/ξc

denotes the anisotropy, ξab the zero-field in-plane correlation
length and Hc the magnetic field applied along the c-axis.
Approaching Tc, the in-plane correlation length diverges as

ξab = ξ±
ab0 |t|−ν , t = T/Tc−1, ± = sgn(t). (2)

Supposing that 3D-xy fluctuations dominate, the critical
exponents are given by [14]

ν � 0.671 � 2/3, α = 2ν − 3 � −0.013, (3)

and there are the universal critical amplitude relations
[2, 3, 9–11, 14]

ξ−
ab0

ξ+
ab0

= ξ−
c0

ξ+
c0

� 2.21,
Q−

Q+ � 11.5,
A+

A− = 1.07,

(4)
and

A−ξ−
a0ξ

−
b0ξ

−
c0 � A− (ξ−

ab0

)2
ξ−

c0 = A− (ξ−
ab0

)3

γ
= (

R−)3

R− � 0.815,

(5)

where A± is the critical amplitude of the specific heat
singularity, defined as

c = (
A±/α

) |t|−α + B. (6)

Furthermore, in the 3D-xy universality class Tc, ξ−
c0 and

the critical amplitude of the in-plane penetration depth
λab0 are not independent but related by the universal
relation [2, 3, 9–11, 14],

kBTc = �2
0

16π3

ξ−
c0

λ2
ab0

= �2
0

16π3

ξ−
ab0

γ λ2
ab0

. (7)

From the singular part of the free energy per unit volume
given by (1) we derive for the magnetization per unit volume
m = M/V = −∂ fs/∂ H the scaling form

m

T H 1/2
c

= − Q±kBξab

�
3/2
0 ξc

F± (z) , F± (z) = z−1/2 dG±

dz
,

z = x−1/2ν =
(
ξ±

ab0

)2 |t|−2ν Hc

�0
. (8)

In terms of the variable x this scaling form is similar to
Prange’s [15] result for Gaussian fluctuations. More generally,
the existence of the magnetization at Tc, of the penetration
depth below Tc and of the magnetic susceptibility above
Tc imply the following asymptotic forms of the scaling
function [2, 3, 8, 12, 13]

Q± 1√
z

dG±

dz

∣
∣
∣
∣
z→∞

= Q±c±
∞,

Q− dG−

dz

∣
∣∣
∣
z→0

= Q−c−
0 (ln (z) + c1) ,

Q+ 1

z

dG+

dz

∣∣
∣
∣
z→0

= Q+c+
0 ,

(9)

with the universal coefficients [2, 8]

Q−c−
0 � −0.7, Q+c+

0 � 0.9, q = Q±c±
∞ � 0.5.

(10)
The scaling form (8) with the limits (9), together with the
critical exponents (3) and the universal relations (4) and (7),
are characteristic critical properties of an extreme type II
superconductor. They provide the basis to extract from
experimental data the doping dependence of the non-universal
critical properties, including the transition temperature Tc, the
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critical amplitudes of correlation lengths ξ±
ab0,c0, the anisotropy

γ etc, while the universal relations are independent of the
doping level.

In practice, however, there are limitations set by the
presence of disorder, inhomogeneities and the magnetic field
induced finite size effect. Nevertheless, as far as cuprate
superconductors are concerned there is considerable evidence
for 3D-xy critical behavior, except for a rounded transition
close to Tc [2, 3, 10–13, 16–24]. As far as disorder is
concerned there is the Harris criterion [25], which states that
short range correlated and uncorrelated disorder is irrelevant
at the unperturbed critical point, provided that the specific
heat exponent α is negative. Since in the 3D-xy universality
class α is negative (3), disorder is not expected to play an
essential role. However, when superconductivity is restricted
to homogeneous domains of finite spatial extent Lab,c, the
system is inhomogeneous and the resulting rounded transition
uncovers a finite size effect [26, 27] because the correlation
lengths ξab,c = ξ±

ab0,c0|t|−ν cannot grow beyond Lab,c , the
respective extent of the homogeneous domains. Hence, as
long as ξab,c < Lab,c the critical properties of the fictitious
homogeneous system can be explored. There is considerable
evidence that this scenario accounts for the rounded transition
seen in the specific heat [2] and the magnetic penetration
depths [28]. In type II superconductors, exposed to a magnetic
field Hi , there is an additional limiting length scale L Hi =√

�0/(a Hi) with a � 3.12 [29], related to the average distance
between vortex lines [3, 29–31]. Indeed, as the density of
vortex lines becomes greater with increasing magnetic field,
this cannot continue indefinitely. The limit is roughly set on the
proximity of vortex lines by the overlapping of their cores. Due
to these limiting lengths the correlation lengths cannot grow
beyond [29]

ξi
(
tp
) = ξ±

0i

∣
∣tp
∣
∣−ν = Li ,

√
ξi
(
tp
)
ξ j
(
tp
) =

√
ξ±

0i ξ
±
0 j

∣
∣tp
∣
∣−ν = √

�0/ (a Hk) = L Hk ,

(11)

where i �= j �= k. As far as the magnetization is concerned
the inhomogeneity induced finite size effect is expected to
set in close to Tc, where ξab,c approaches Lab,c , while for a
field applied along the c-axis, the magnetic finite size effect
dominates when L Hc = √

�0/(a Hc) � Lab. Accordingly,
sufficiently extended magnetization measurements are not
expected to provide estimates for the critical properties of the
associated fictitious homogeneous system only, but do have the
potential to uncover inhomogeneities giving rise to a finite size
effect as well. As a unique size of the homogeneous domains is
unlikely, the smallest extent will set the scale where the growth
of the respective correlation length starts to deviate from the
critical behavior of the homogeneous counterpart.

To recognize the implications of the magnetic field
induced finite size effect, it is instructive to note that the scaling
form of the singular part of the free energy per unit volume, (1),
is formally equivalent to an uncharged superfluid, such as 4He,
constrained to a cylinder of diameter L Hc = (�0/(a Hc))

1/2.
Indeed, the finite size scaling theory predicts that, in a system
confined to a barlike geometry, L · L · H , with H → ∞, an

observable O(t, L) scales as [26, 27, 32]

O (t, L)

O (t,∞)
= fO (y) , y = ξ (t) /L, (12)

where f (y) is the finite size scaling function. As in the
confined system a 3D–1D crossover occurs, there is a rounded
transition only. Indeed, because the correlation length ξ(t)
cannot grow beyond L there is a rounded transition at

Tp = Tc

(

1 −
(

ξ−
0

L

)1/ν
)

: T < Tc.

Tp = Tc

(

1 +
(

ξ+
0

L

)1/ν
)

: T > Tc.

(13)

The resulting rounding of the specific heat singularity and the
shift of the smeared peak from Tc to Tp is well confirmed
in 4He [33, 34]. In superconductors the specific heat adopts
with (6) and (12) the finite size scaling form

c
(
t, L Hc

) = A−

α
|t|−α fc

(
t L1/ν

Hc

)
, ν � 2/3, (14)

where

fc

(
t L1/ν

Hc

)
=
⎧
⎨

⎩

1 :t L1/ν

Hc
= 0 : t � 0

c−
∞
(

t L1/ν

Hc

)α :L1/ν

Hc
→ ∞ :t < 0

(15)
Invoking (13) in the form |tp| = (ξ−

ab0/L H c)
1/2ν , the height of

the rounded specific heat peak at Tp vanishes then as

c
(
Tp
) = A−

α

∣
∣tp
∣
∣−α

fc

((
ξ−

ab0

)1/ν
)

= A−

α

((
ξ−

ab0

)2
a

�0

)−α/2ν

fc

((
ξ−

ab0

)1/ν
)

H −α/2ν
c , (16)

because α < 0 (3). The resulting shift and reduction of
the rounded specific heat peak with increasing magnetic field
is in a variety of type II superconductors [29], including
MgB2 [35, 5], qualitatively well confirmed.

Furthermore, (14) yields with Maxwell’s relation

∂(C/T )

∂ Hc

∣∣
∣
∣
T

= ∂2 M

∂T 2

∣∣
∣
∣

Hc

(17)

the scaling form

∂(c/T )

∂ Hc
= ∂2m

∂T 2
= −kB A±

2ανT
H −1−α/2ν

c |x |1−α ∂ f ±
c

∂x
. (18)

2. Experiment, results and analysis

The nearly rectangular shaped MgB2 single crystal investigated
here was fabricated by high-pressure synthesis described
in detail elsewhere [36]. Its calculated volume is 1.4 ×
10−5 cm3 and agrees with susceptibility measurements in the
Meissner state with the calculated shape factor 0.81. The
magnetic moment was measured by a commercial Quantum
Design DC-SQUID magnetometer MPMS XL, allowing us to

3
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249.71

Figure 1. Measured magnetic moment of the studied MgB2 single
crystals for different magnetic fields applied along the crystals’
c-axis. The lines are guides to the eye. For clarity not all measured
fields are shown.

achieve a temperature resolution up to 0.01 K. The installed
reciprocating sample option (RSO) allows us to measure
magnetic moments down to 10−8 emu. In our sample this
allows us to detect the magnetic moment near Tc down to
25 Oe. The applied magnetic field was oriented along the c-
axis of the sample. After applying the magnetic field well
below Tc it was kept constant and the magnetic moment of the
sample was measured at a stabilized temperature by moving
the sample with a frequency of 0.5 Hz through a set of
detection coils. The diamagnetic magnetization, M = mV ,
was then obtained by subtracting Mb = 5 × 10−8 H emu,
the temperature independent paramagnetic and sample holder
contributions. Zero-field cooled (ZFC) magnetization curves
have been compared to field cooled (FC) data, obtained by
cooling to a given temperature in the presence of different
fields. Here we concentrate on the reversible regime (figure 1)
close to Tc. Due to the small volume of the sample its magnetic
moment can be reliably detected only below and slightly above
Tc. For this reason we concentrate on the fluctuation effects
below and at Tc.

To estimate Tc from the magnetization data m(T, Hc) we
invoke the limit z → ∞. Here the scaling form (8) reduces
with (9) and (10) to

m

H 1/2
c

= − kBq

�
3/2
0

ξab

ξc
T, q = Q±c±

∞ � 0.5. (19)

Q+c+∞ = Q−c−∞ follows from the fact that m/H 1/2
c adopts at

the zero-field transition temperature Tc a unique value. Here
the curves m/H 1/2

c versus T taken at different fields Hc should
cross and m/H 1/2

c γ Tc adopts the universal value

mξc (Tc)

H 1/2
c Tcξab (Tc)

= − kBq

�
3/2
0

. (20)

Accordingly, the location of a crossing point in m/H 1/2
c versus

T provides an estimate for the 3D transition temperature and
the factor of proportionality in m/Tc versus H 1/2

c probes the
anisotropy γ = ξab(Tc)/ξc(Tc). From figure 2 showing

Figure 2. m/H 1/2
c versus T for a MgB2 single crystal with the

magnetic field Hc applied along the c-axis. The solid line is
m/(Tc H 1/2

c ) ≈ −1.4 × 10−6 (emu cm−3 K−1 Oe−1/2) with
Tc = 38.83 K.

Figure 3. Scaling plot m/(T H 1/2) versus t H−3/4
c .

m/H 1/2
c versus T we derive the estimate Tc � 38.83 K

and (20) yields with m/(Tc H 1/2
c ) ≈ 1.4 × 10−6 (emu

cm−3 K−1 Oe−1/2) for the anisotropy the value

ξab (Tc) /ξc (Tc) ≈ 1.9. (21)

In a homogeneous system where the correlation lengths diverge
at Tc as ξab,c = ξ±

ab0,c0|t|−ν with ν � 2/3, whereupon
ξab(Tc)/ξc(Tc) corresponds to the anisotropy γ = ξ±

ab0/ξ
±
c0.

In contrast, in an inhomogeneous system, consisting of
homogeneous domains of spatial extent Lab,c this ratio probes
ξab(Tc)/ξc(Tc) = Lab/Lc, because the correlation lengths
cannot exceed the homogeneous domains. Nevertheless,
ξab(Tc)/ξc(Tc) ≈ 1.9 is close to γ � 2, the estimate obtained
near Tc with torque magnetometry [37].

According to the scaling form (8), consistency with
critical behavior also requires that for low fields the data plotted
as m/(T H 1/2

c ) versus t H −3/4
c should collapse near t H −3/4

c →
0 on a single curve. Evidence for this collapse emerges from
figure 3.

Because the limiting magnetic length, L Hc = √
�0/(a Hc),

decreases with increasing field, this scaling behavior no longer
applies at higher fields. Indeed, with increasing field L Hc =

4



J. Phys.: Condens. Matter 20 (2008) 135208 S Weyeneth et al

Figure 4. −m/T versus T for various applied magnetic fields. The
solid line indicates −m/Tp = 4.5 × 10−5 (emu cm−3 K−1) at
Hc = 299.2 Oe, where Tp � 38.55 K and the dashed one
−m/Tp = 1.5 × 10−5 (emu cm−3 K−1) at Hc = 119.9 Oe, where
Tp � 38.7 K. The arrows mark the respective Tp values.

√
�0/(a Hc) approaches ξab, and when ξab(Tp) = L Hc the scal-

ing form (19) reduces to

m

Tp
� −0.5

kB

�
3/2
0

ξab
(
Tp
)

ξc
(
Tp
) H 1/2

c = −0.5
kB

�0a1/2

1

ξc
(
Tp
) , (22)

where

Tp = Tc

⎛

⎝1 −
(

a Hc
(
ξ−

ab0

)2

�0

)3/4
⎞

⎠ = Tc

(

1 −
(

ξ−
ab0

L Hc

)3/2
)

,

(23)
in analogy to (13), the expression for 4He constrained
below Tc to cylinders of diameter L. Accordingly, in
sufficiently high fields the magnetic field induced finite size
effect is predicted to eliminate the characteristic critical field
dependence, −m/Tc ∝ H 1/2

c , emerging from figure 2, because
the in-plane correlation length ξab cannot grow beyond L Hc . A
glance at figure 4, showing −m/T versus T for various applied
magnetic fields in the range from 120 to 300 Oe, reveals that
this prediction is well confirmed in this field range. Indeed,
−m/T levels off above T = Tp and the magnitude of −m/Tp

is controlled by ξc(Tp).
Using equation (23), Tp(Hc = 299.2 Oe) � 38.55 K

and Tp(Hc = 119.9 Oe) � 38.7 K, we obtain for the critical
amplitude of the in-plane correlation length the estimate

ξ−
ab0 � 52 Å. (24)

On this basis the dependence of m/(T H 1/2
c ) on the scaling

variable z = (ξ−
ab0)

2|t|−4/3 Hc/�0 is then readily calculated.
When the magnetic field induced finite size effect scenario
holds true, the effective range of the scaling variable is
restricted to

z � 1/a � 0.32, (25)

because the correlation length cannot exceed ξab = L Hc . As a
consequence, (8) reduces for z � 0.32 to

|t|−2/3 m

T
= − kB

�0ξ
−
c0

Q− dG−

dz

∣
∣∣
∣
z=1/a

. (26)

Figure 5. |t |−2/3m/T versus z for various fields. The solid line is
|t |−2/3m/T = 8 × 10−4 (emu cm−3 K−1) and the arrow marks
z = 1/a � 0.32.

Accordingly, in the plot |t|−2/3m/T versus z the data should
collapse and level off for z � 0.32. From figure 5, showing
this scaling plot, it is seen that this behavior is well confirmed
down to Hc = 24.86 Oe, whereupon we obtain for Lab, the
spatial extent of the homogeneous domains in the ab-plane,
the lower bound

Lab =
(

�0

a Hc

)1/2

� 5.2 × 10−5cm, (27)

revealing the high quality of the sample.
To check the estimates for the critical amplitudes of the

correlation lengths, we invoke, using (8), (9) and (10), the
limiting behavior

dm

d ln (Hc)
= 0.7

kBT

�0ξc
, (28)

applicable for z → 0. From the plot dm/d ln(Hc) versus Hc at
T = 38.7 K, shown in figure 6 and dm/d ln(Hc) = 1.2 × 10−3

(emu cm−3 ln(Oe)−1) we obtain for the critical amplitude of
the c-axis correlation length the estimate

ξ−
c0 � 33 Å, (29)

in reasonable agreement with ξ−
abo/γ � 52 Å/1.9 � 27 Å.

Note that at this temperature and ξ−
abo � 52 Å the limit z → 0

is attained because z = 2.74 × 10−3 Hc, with Hc in Oe.
Together with the universal relation (7), ξ−

c0 � 33 Å yields for
the critical amplitude of the in-plane penetration depth, λab0,
and the Ginzburg parameter, κab0, the estimates

λab0 � 7.3 × 10−5cm, κab0 = λab0/ξ
−
ab0 � 140, (30)

which apply very close to Tc. Unfortunately, the
available magnetic penetration depth data does not enter this
regime [38, 39].

To explore the evidence for an inhomogeneity induced
finite size effect, attributable to a system consisting of

5
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Figure 6. dm/d ln(Hc) versus Hc at T = 38.7 K. The solid line is
dm/d ln(Hc) = 1.2 × 10−3 (emu cm−3 ln(Oe)−1).

homogeneous domains of finite extent, we rewrite the scaling
form (8) with the aid of (9) in the form

m

T
= − kB

�0ξc
Q− dG−

dz
= − |t|2/3 kB

�0ξc0
Q− dG−

dz

∣
∣∣
∣
z=Hc L2

ab/�0

,

(31)
because ξab cannot grow beyond Lab, the extent of the
homogeneous domains in the ab-plane. However, sufficiently
close to Tc, ξc approaches Lc, the extent of the homogeneous
domains along the c-axis. Here this scaling form reduces to

m

T
= − f0 (Hc) ,

f0 (Hc) = kB

�0 Lc
Q− dG−

dz

∣
∣∣
∣
z=Hc L2

ab/�0

.

(32)

In figure 7 we depict −|t|−2/3m/T versus −t . Apparently, this
limiting behavior is attained roughly below −t = −tpLc =
3 × 10−4, where

ξc(t) = ξ−
c0

∣
∣tpLc

∣
∣−2/3 = Lc. (33)

With ξ−
c0 = ξ−

ab0/γ � 52 Å/1.9 we obtain for Lc, the c-axis
extent of the homogeneous domains, the estimate

Lc ≈ 6 × 10−5 cm, (34)

which is comparable to the lower bound Lab � 5.2 ×
10−5 cm (27), revealing again the high quality of the sample.

We have seen that the attainable critical regime is limited
by both the magnetic field and inhomogeneity induced finite
size effects. The former leads according to (23) in the (H, T )-
plane to the line

Hcp (T ) = �0

a
(
ξ−

ab0

)2

(
1 − T

Tc

)4/3

: T < Tc,

Hcp (T ) = �0

a
(
ξ−

ab0

)2

(
T

Tc
− 1

)4/3

: T > Tc,

(35)

depicted in figure 8. It is a crossover line because for a
fixed temperature, e.g. below Tc, the limiting length L Hc =

Figure 7. −|t |−2/3m/T versus −t . The solid line is
−|t |−2/3m/T = 6 × 10−6(−t)−2/3 (emu cm−3 K−1).

Figure 8. Crossover lines Hcp and vortex melting line Hcm versus T .
The 3D–1D and the 1D–3D crossover lines Hcp follow from (35) for
ξ−

ab0 = 52 Å (24), ξ+
ab0 = 52 Å/2.21 � 23.62 Å (4) and

Tc = 38.83 K. The solid line applies below Tc and the dashed line
above Tc. The dotted vortex melting line Hcm follows from (38) and
lies at temperatures below the crossover lines Hcp.

(�0/(a Hc))
1/2 decreases with increasing magnetic field and

matches at Hcp the in-plane correlation length ξab. Here and
above Hcp, superconductivity is then confined to cylinders of
diameter L Hcp in the ab-plane and height Lc along the c-
axis. Hence in a homogeneous system where Lc = Lab =
∞ a 3D–1D crossover takes place. Even in the presence
of inhomogeneities, corresponding to homogeneous domains
of extent Lab,c , this holds true when Hc > �0/(aL2

ab)

and −t = 1 − T/Tc > (ξ−
c0/Lc)

3/2 because the magnetic
field induced finite size effect dominates when L Hc < Lab

and ξc < Lc. Indeed, below Hc = �0/(aL2
ab) and

−t = 1 − T/Tc = (ξ−
c0/Lc)

3/2 superconductivity occurs in
finite boxes with extent L2

ab Lc and above superconductivity
is again confined to cylinders and their finite height Lc is
not detected because ξc < Lc. Noting then that in the
present case of MgB2 Lab � 5.2 × 10−5 cm (27), the 3D–
1D crossover scenario applies down to fields smaller than
25 Oe, while the finite extent of the homogeneous domains
along the c-axis requires that 1 − T/Tc � 3 × 10−4

6
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Figure 9. m/(T H 1/2) versus T at H = 1 Oe for the MgB2 powder
sample of Lascialfari et al [6]. The horizontal line is
m/(Tc H 1/2) � −1.44 × 10−6 (emu cm−3 K−1 Oe−1/2) and the
vertical one marks Tc � 39.17 K.

(see figure 6), excluding a very narrow temperature range
below Tc.

Finally, we show that this scenario is also consistent with
the measurements of Lascialfari et al [6] performed on powder
samples at T � Tc. The rather large volume of the sample
made it possible to explore the critical regime above Tc as
well. To demonstrate the consistency with our analysis we
reproduced some data in figure 9 in terms of m/(T H 1/2) versus
T . For a powder sample we obtain from (8), (9) and (10) at Tc

the value

m

Tc H 1/2
= −0.5

kBγ

�
3/2
0

〈
ε (δ)3

〉
, γ = ξab

ξc
, (36)

where

ε (δ) =
(

cos (δ)2 + 1

γ 2
sin (δ)2

)1/2

. (37)

δ denotes the random orientation of the applied magnetic field
with respect to the c-axis and 〈ε(δ)3〉 is the corresponding
average. For γ = 1.9 we obtain 〈ε(δ)3〉 � 0.541 and with
this m/(Tc H 1/2) � −1.44 × 10−6 (emu cm−3 K−1 Oe−1/2).
Perfect agreement with our analysis emerges from figure 9
for Tc � 39.17 K, consistent with the observation of
Lascialfari et al [6] that in this sample Tc is near 39.1 K. To
explore the occurrence of the vortex melting transition and
the 3D to 1D crossover we displayed in figure 10 the data
of Lascialfari et al [6] according to the scaling form (18).
The minimum at tp H −3/4 � −3.4 × 10−3 Oe−3/4 locates
the 3D–1D crossover line, while the peak at tm H −3/4 �
−7.5 × 10−3 Oe−3/4 signals the vortex melting transition. For
the ratio of the universal values of the scaling variable z at
the melting and the 1D to 3D crossover line we obtain the
estimate

zm/zp = (
tp (H ) /tm (H )

)4/3 � 0.35, (38)

in reasonable agreement with zm/zp � 0.25, the value
emerging from the specific heat data of Roulin et al [23] for

Figure 10. d2(m/H 1/2)/dT 2 versus t/H 3/4 for H = 1 Oe derived
from the data of Lascialfari et al [6]. The minimum at
tp H−3/4 � −3.4 × 10−3 Oe−3/4 locates the 3D–1D crossover line,
while the peak at tm H−3/4 � −7.5 × 10−3 Oe−3/4 signals the vortex
melting transition.

YBa2Cu3O6.97. The resulting vortex melting line is included in
figure 8.

At higher fields and fixed temperature, however, a
crossover from m/T ∝ H to m/T = const. is expected to
occur. Indeed, approaching the limit z → 0, the scaling form

m

T
= −0.9

kBξ 2
ab

�2
0ξc

〈
ε (δ)2

〉
H, (39)

applies according to (8), (9) and (10). As the scaling variable
z increases with rising magnetic field it approaches the value
z = 1/a, where the magnetic field induced finite size effect
sets in. Here the scaling expression (8) applies in the form

m

T
= − kB

�0ξc
〈ε (δ)〉 Q+ dG+

dz

∣
∣∣
∣
z=1/a,

(40)

for z � 1/a, where

z = H ξ 2
ab

�0
ε (δ) . (41)

From figure 11, showing m/T versus H at T = 39.3 K for
the MgB2 powder sample of Lascialfari et al [6], it is seen
that this behavior, including the saturation due to the magnetic
field induced finite size effect, is well confirmed. Therefore,
in analogy to the situation below Tc, there is a magnetic field
induced finite size effect above Tc as well. However, there is no
long range order in this regime so that uncondensed pairs are
forced to be confined above Hcp(T ) (see figure 8) in cylinders
of diameter L Hcp .

3. Summary

To summarize, our scaling analysis of reversible magnetization
data of a MgB2 single crystal with the magnetic field applied
along the c-axis provided considerable evidence that even
in this type II superconductor the 3D-xy critical regime
is experimentally accessible, provided that the sample is

7
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Figure 11. m/T versus H at T = 39.3 K for the MgB2 powder
sample of Lascialfari et al [6]. The solid line is
m/T = −4.2 × 10−8 H (G K−1) and the dashed one
m/T = −2.1 × 10−6 (G K−1), marking the saturation due to the
magnetic field induced finite size effect.

sufficiently homogeneous. The high quality of our sample
allowed us to explore the occurrence of the magnetic field
induced finite size effect down to rather low magnetic fields
where 3D-xy fluctuations still dominate. In this regime we
were able to provide fairly unambiguous evidence for this
finite size effect. This implies that in type II superconductors,
such as MgB2, exposed to a magnetic field superconductivity
is confined to cylinders. Their diameter is given by the
limiting magnetic length L Hi = (�0/(a Hi))

1/2, whereupon
for a magnetic field applied parallel to the i -axis there is
a line Hpi(T ) = (�0/(aξ−

j0ξ
−
k0))(1 − T/Tc)

4/3 with i �=
j �= k, where below Tc a 3D–1D crossover takes place.
ξ−

i0, j0,k0 denote the critical amplitudes of the correlation length
below Tc along the respective axis. Accordingly, there is
below Tc no continuous phase transition in the (H, T )-plane
along the Hc2-lines as predicted by the mean-field treatment.
Our scaling analysis of the magnetization data of Lascialfari
et al [6] also confirmed that the magnetic field induced finite
size effect is not restricted to the superconducting phase
(T < Tc). Indeed, above Tc there is a line Hpi(T ) =
(�0/(aξ+

j0ξ
+
k0))(T/Tc − 1)4/3 where the 3D to 1D crossover

occurs and uncondensed pairs are forced to be confined in
cylinders. Furthermore, we have shown that the scaling
analysis of magnetization data also opens a door onto the
ascertainment of the homogeneity of the sample in terms of
the finite size effect arising from the limited extent of the
homogeneous domains.
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